

## Primary energy spectra in the 1-100 PeV energy range: GAMMA Experiment



<sup>4</sup>Y.Gallant, <sup>1</sup>A.Garyaka, <sup>5</sup>L.Jones, <sup>1</sup>R.Martirosov, <sup>2</sup>N.Nikolskaya, <sup>3</sup>J.Procureur, <sup>1</sup><u>S.Ter-Antonyan</u>

<sup>1</sup> Yerevan Physics Institute
<sup>2</sup> Moscow Physics Institute
<sup>3</sup> Centre d Etudes Nucleaires Bordeaux-Gradignan,
<sup>4</sup> Universite Montpellier II
<sup>5</sup> University of Michigan

#### GAMMA facility



- Location: Armenia, Mt.Aragats 3200 m a.s.l.
  EAS array: 33x3 (1x1x0.05)m<sup>3</sup>+ +9(0.3x0.3x0.05) m<sup>3</sup>
- Muon hall: 2500 g/cm<sup>2</sup> of rock 150 (1x1x0.05)m<sup>3</sup>



• EAS data:  $N_{ch} > 5 \cdot 10^5 (100\%)$  R < 25 m (50 m)  $\theta < 30^0$   $N_{\mu}(R_{\mu} < 50m) > 10^3$   $E_{\mu} > 5 GeV$  $T = 6.2 \cdot 10^7 sec$ 

#### Measurement errors:



### EAS simulations:

CORSIKA6.031(EGS, NKG)

| Α  | SIBYLL2.1        | QGSJET01         | E <sub>min</sub> [PeV] |
|----|------------------|------------------|------------------------|
| P  | $1.0.10^{5}$     | $1.0.10^{5}$     | 0.5                    |
| He | $7.1 \cdot 10^4$ | $6.0.10^4$       | 0.7                    |
| 0  | 4.6.104          | $4.4 \cdot 10^4$ | 1.0                    |
| Fe | $4.8 \cdot 10^4$ | $4.0.10^{4}$     | 1.2                    |

$$\begin{split} & E_{max} = 5 \cdot 10^{3} \ PeV \\ & \theta < 30^{0} \\ & \gamma = -1.5 \\ & E_{e,\gamma} > 1 \ MeV \\ & E_{\mu} > 150 \ MeV \\ & \underline{E}_{\mu} > 4 \ GeV \ (e^{\pm}) \end{split}$$

# Detector response

$$\delta_{N_{ch}}(A, N_{ch}) \equiv \frac{N_{ch}(E_e = IMeV, \mathsf{NKG})}{N_{ch}(E_d, \gamma, \mathsf{EGS})} \xrightarrow{\wedge}{\mathbb{Z}} 1.1 \qquad (a) \\ \downarrow \qquad (a) \\ \downarrow \qquad (b) \\ \downarrow \qquad (c) \\ \downarrow \qquad$$

#### Particle density spectra

#### Single particle spectra



EAS Inverse Problem:  $F(X) = \sum_{A} \int W_A(E, X) f_A(E) dE$ 

$$f_Z(E) = \Phi_Z \cdot E_k^{-\gamma_1} \cdot (E / E_k)^{-\gamma_2}$$

$$\chi^2 = \sum_i \left[ (F_i - \tilde{F}_i) / (\sigma_{F,i} + \sigma_{\tilde{F},i}) \right]^2$$

**1) 1-2D** Combined Analysis,  $n_{d.f.} = 350$ 

2) 2D-Analysis, 
$$F(X) \equiv d^2 F/dN_e dN_\mu$$
,  $n_{d.f.} = 240$ 

3) **4D**-Analysis,  $F(X) \equiv d^4 F/dN_e dN_\mu ds dcos\theta$ ,  $n_{d.f.} = 1640$ 

#### **GAMMA EAS data and predictions**



 $T = 6.19 \cdot 10^7 sec$ ,



## Primary energy spectra

$$f_Z(E) = \Phi_Z E_k^{-\gamma_1} \left(\frac{E}{E_k}\right)^{-1}$$

γ

 $E_{k} = Z \cdot E_{R}$   $E < E_{k} \Rightarrow \gamma = \gamma_{1} \cong 2.68 \pm 0.02$  $E > E_{k} \Rightarrow \gamma = \gamma_{2} \cong 3.19 \pm 0.03$ 

Results of 1-2D Combined Analysis  $\Phi_1 = 0.095 \pm 0.008 \ [\text{m}^{-2} \cdot \text{s}^{-1} \cdot \text{sr}^{-1} \cdot \text{TeV}^{-1}]$   $\Phi_2 = 0.10 \pm 0.012$   $\Phi_{3-16} = 0.043 \pm 0.007$  (*O* - like)  $\Phi_{17-26} = 0.024 \pm 0.004$  (*Fe* - like)  $E_R = 2500 \pm 200 \text{ TV}$ 

 $\chi^2/n_{d.f.} \approx 2.0$ 



### GAMMA and KASCADE



## Verification



# Conclusion

- The obtained primary energy spectra strongly depend on interaction model.
- ➤ The SIBYLL interaction model is more preferable.
- ➢ Rigidity-dependent spectra describe the EAS data at least up to E~100 PeV.
- ➤All-particle primary energy spectra slightly depend on interaction model.



✓ The energy spectra of primary nuclei <u>disagree</u> with the same KASCADE data in 1-100 PeV energy range, however, the discrepancies of the all-particle energy spectra obtained by the GAMMA and KASCADE are sufficiently small (~20%).



GAMMA Experiment