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On the basis of the extensive air shower (EAS) data obtained by the GAMMA experiment, the energy spec-
tra and elemental composition of the primary cosmic rays are derived in the 1 − 100 PeV energy range. The
reconstruction of the primary energy spectra is carried out using an EAS inverse approach with the hypothesis
of power-law primary energy spectra with rigidity-dependent knees. The rigidity-dependent knee feature of the
primary energy spectra is displayed at the rigidities ER � 2.5 ± 0.2 PeV/Z and ER � 3.1 − 4.2 PeV/Z for the
SIBYLL and QGSJET interaction models respectively.
Using the event-by-event method of the primary energy evaluation from the measured Nch, Nµ and shower age
(s) parameters, the all-particle energy spectrum is also obtained.

1. Introduction

The investigation of the energy spectra and ele-
mental composition of primary cosmic rays in the
knee region (1− 100 PeV) remains one of the in-
triguing problems of modern high energy cosmic-
ray physics. Despite the fact that these investi-
gations have been carried out for more than half
a century, the data on the elemental primary en-
ergy spectra at energies E > 1 PeV still need
improvement.
Here, the main results of evaluations of primary
energy spectra in the knee region on the basis
of the GAMMA facility [1] EAS data [2,3] are
presented. Preliminary results have already been
presented in [2–4].
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2. GAMMA experiment

The GAMMA installation [1,2,5] is a ground-
based array of 33 surface particle detection sta-
tions and 150 underground muon detectors, lo-
cated on the south side of Mount Aragats in
Armenia. The elevation of the GAMMA facility
is 3200 m above sea level. A diagrammatic layout
is shown in Fig. 1.

The surface stations of the EAS array are lo-
cated on 5 concentric circles of radii ∼20, 28,
50, 70 and 100 m, and each station contains
3 square plastic scintillation detectors with the
following dimensions: 1 × 1 × 0.05 m3 (Fig. 1).
150 underground muon detectors (muon carpet)
are compactly arranged in the underground hall
under 2.3 kg/cm2 of concrete and rock. Detailed
descriptions of the detector system, triggering,
and method of reconstruction of EAS parameters
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Figure 1. Diagrammatic layout of the GAMMA
facility.

are presented in [1,2,5]. The detector response
was computed [2,5] taking into account the EAS
γ-quanta contribution using the CORSIKA 6.031
code [8].
Showers were selected for analysis with the fol-
lowing criteria: Nch > 5 · 105, R < 25 m,
θ < 30◦, 0.3 < s < 1.6, χ2(Nch)/m < 3 and
χ2(Nμ)/m < 3 (where m is the number of scin-
tillators with non-zero signal). The selected
measurement range provided 100% EAS detec-
tion efficiency and similar conditions for the
reconstruction of the shower lateral distribution
functions.

3. Elemental primary energy spectra

The observed spectra F (q) in measured EAS
parameters q = (Nch, Nμ, s) result from convo-
lutions of the (a priori unknown) energy spectra
IA(E) of primary nuclei (A ≡ H, He, . . . at least
up to Ni) with the shower spectra WA(E,q) [6,7]:

F (q) =
∑

A

∫

E

WA(E,q)IA(E)dE . (1)

The functions WA(E,q) are derived using a
model of the EAS development in the atmosphere
and convolution of the resulting shower spectra at
the observation level with the corresponding re-
sponse functions [2,6].
The integral equation (1) defines the EAS inverse
problem, namely the evaluation of the primary
energy spectra IA(E) on the basis of the mea-

sured distributions F (qi) and the known kernel
functions WA(E,qi) [2,6].
In order to evaluate the primary energy spectra
on the basis of the EAS data set we regularized
the integral equation (1) using a parametrization
method [7]. The solutions for the primary en-
ergy spectra in (1) were sought based on a broken
power-law function with a “knee” at the rigidity-
dependent energy Ek(A) = ER ·Z, and the same
spectral indices for all species of primary nuclei
(A ≡ p, He, O, Fe), γ1 below and γ2 above the
knee respectively:

dIA

dE
= ΦA

(
Ek

1 TeV

)−γ1 (
E

Ek

)−γ

, (2)

where γ = γ1 for E ≤ Ek(A), γ = γ2 for
E > Ek(A), ER is the particle’s rigidity and Z
the charge of nucleus A.
The integral equation (1) is thereby transformed
into a parametric equation with the unknown
spectral parameters ΦA, ER, γ1 and γ2, which are
evaluated by minimization of the corresponding
χ2 function [2,5].
EAS simulations for the evaluation of the primary
energy spectra using the GAMMA facility EAS
data were carried out for NA ≡ 105 primary H ,
7.1·104 He, 4.6·104 O and 4.8·104 Fe nuclei using
the CORSIKA NKG mode [8] and the SIBYLL
[9] interaction model. The corresponding statis-
tics for the QGSJET [10] interaction model were:
105, 6 · 104, 4.4 · 104 and 4 · 104.
The simulated energies were distributed follow-
ing a weight function I0(A, E) ∝ E−1.5 for the
Monte-Carlo integration of parametric equation
(1). The simulated showers had core coordinates
distributed uniformly within a radius R < 25 m,
and zenith angles θ < 30◦.
Using the aforementioned formalism, the U =
6 examined functions: F (q) ≡ dF (θ)/dNe,
dF (θ)/dNμ, dF (Nμ)/dNe, dF (Ne)/dNμ, s(Ne),
Nμ(Ne); and the corresponding EAS data set,
the unknown spectral parameters ΦA, ER, γ1 and
γ2 of parametrization (2) were derived by mini-
mization of the χ2 [2,5] and forward folding (1),
with a number of degrees of freedom nd.f. =∑6

1 Vu − p− 1 � 350, where p = 7 is the number
of adjustable parameters.
The values of the spectral parameters (2) derived
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from the solution of the parameterized equation
(1) are presented in Table 1 for the SIBYLL and
QGSJET interaction models. The primary en-

Table 1
Parameters of the primary energy spectra (2)

from combined approximations to the EAS data.
The scale factors ΦA and particle rigidity ER re-
spectively have units of (m2· s · sr · TeV)−1 and
TV.
Parameters SIBYLL QGSJET
ΦH 0.095± 0.008 0.165± 0.005
ΦHe 0.100± 0.012 0.020± 0.008
ΦO 0.034± 0.007 0.008± 0.004
ΦFe 0.024± 0.004 0.013± 0.005
ER 2500± 200 3200± 150
γ1 2.68± 0.015 2.66± 0.010
γ2 3.19± 0.03 3.11± 0.02
χ2/nd.f. 2.0 1.5

ergy spectra obtained for p, He, O, and Fe nu-
clei, along with the all-particle energy spectra, are
shown in Fig. 2 (lines and shaded areas) for the
SIBYLL (left panel) and QGSJET (right panel)
interaction models. The symbols in Fig. 2 show
the all-particle spectra obtained by KASCADE
[6] from a 2-dimensional (Ne, Nμ) unfolding using
an iterative method, and from GAMMA [4] using
an event-by-event method. Also shown as error
bars in the left panel of Fig. 2 are extrapolations
of the balloon and satellite data to the energy
E � 106 GeV, computed using power-law approx-
imations to the available direct measurement data
[11]. In this extrapolation, the O-like group was
assumed to include the elements Z = 3–16, and
the Fe-like group the elements Z = 17–26.
As can be seen from Fig. 2 and Table 1, the de-
rived primary energy spectra depend significantly
on the interaction model.
The energy spectra of primary H, He, O-like and
Fe-like nuclei obtained with the SIBYLL inter-
action model agree with corresponding extrapo-
lations of the balloon and satellite data to ∼ 103

TeV energies. The energy spectra obtained from
the QGSJET model show a predominantly proton
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Figure 2. Energy spectra and abundances of the
primary nuclei groups (lines and shaded areas)
for the SIBYLL (left panel) and QGSJET (right
panel) interaction models. All-particle spectra
from GAMMA [4] and KASCADE [6] are shown
as symbols. Vertical bars show the extrapolations
of balloon and satellite data [11].

composition in the knee region.

4. All-particle energy spectrum

The mountain location of the GAMMA exper-
iment and the agreements of observed and sim-
ulated data in the measurement range 5 · 105 <
Nch < 5 · 107 allowed, apart from above, to ob-
tain the all-particle energy spectra with high re-
liability. The method is based on an event-by-
event evaluation of the primary energy using re-
constructed parameters Nch, Nμ, s, θ of detected
EAS [2,4].

Using the simulated database, J = 1.5 · 104

EAS events were taken for each of k = 1, . . . , 4
kinds (H, He, O, Fe) of primary nuclei and each
interaction model (SIBYLL, QGSJET). The re-
constructed Nch, Nμ, s shower parameters, known
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Figure 3. All particle primary energy spectra
obtained by event-by-event analysis (filled sym-
bols) and EAS inverse problem solutions (solid
and dashed lines) on the bases of GAMMA 2004-
2006 database for R < 50m and θ < 450.

zenith angle θ and primary energy E0 were used
at minimization χ2(a1, . . . , a6, σE | ln E1, ln E0),
where E1 = f(a1, . . . , a6|Nch, Nμ, s, θ) is the in-
vestigated parametric function with a1, ..., a6 pa-
rameters.
The best estimates were found to fit:

ln E1 = a1x +
a2
√

s

c
+ a3 + a4c +

a5

(x− a6y)
, (3)

where x = lnNch, y = lnNμ(R < 50m), c =
cos θ. The values of the a1, . . . , a6 parameters for
both interaction models are presented in [2,4] at
corresponding χ2

min/nd.f. � 1, where the number
of degree of freedom (nd.f.) was equal to 6× 104,
and σE = 0.15.
The all-particle energy spectrum derived by the
fit above, at the SIBYLL (filled circle symbols)
interaction models taking into account statisti-
cal and methodical errors (dark shaded area) are
shown in Fig. 3.

5. Conclusion

A rigidity-dependent primary energy spectra
(2) describes the EAS data of the GAMMA ex-
periment at particle magnetic rigidities ER �
2.5 ± 0.2 PV (SIBYLL) and ER � 3.1 − 4.2 PV
(QGSJET). The corresponding spectral power-
law indices are γ1 = 2.68 ± 0.02 and γ2 =
3.10 − 3.23 below and above the knee respec-
tively, and the element group scale factors ΦA

are given in Table 1. The abundances and energy
spectra obtained for primary p, He, O-like and
Fe-like nuclei depend on the interaction model.
The SIBYLL interaction model is preferable in
terms of consistency of the extrapolations of the
derived primary spectra (Fig. 2) with direct mea-
surements in the energy range of satellite and bal-
loon experiments [11]. The obtained energy spec-
tra for primary P, He, Fe nuclei (Fig. 2) strong
disagree with the same KASCADE data from [6].
The observed anomaly of the all-particle energy
spectrum in the 50-150 PeV energy range (Fig. 3)
unaccounted for at present and will require sub-
sequent investigations.
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