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Abstract

The problem of the uniqueness of solutions during the evaluation of primary energy spectra in the knee region using an extensive air
shower (EAS) data set and the EAS inverse approach is investigated. It is shown that the unfolding of primary energy spectra in the knee
region leads to mutually compensative pseudo solutions. These solutions may be the reason for the observed disagreements in the ele-
mentary energy spectra of cosmic rays in the 1–100 PeV energy range obtained from different experiments.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The extensive air shower (EAS) inverse approach to a
problem of the primary energy spectra reconstruction in
the region of 1–100 PeV energies has been an essential
tool in the past decade [1–7]. Basically, it follows from
the high accuracies of recent experiments [8–12] and
the availability of the EAS simulation code [13], which
was developed in the framework of contemporary inter-
action models in order to compute the kernel functions
of a corresponding integral equation set [6,11]. At the
same time, the energy spectra of primary (H, He and
Fe) nuclei obtained from the KASCADE experiment
[6] using the EAS inverse approach disagree with the
same data from the ongoing GAMMA experiment
[11,12], where parameterization of the EAS inverse prob-
lem is used.

Below, a peculiarity of the EAS inverse problem is inves-
tigated, and one of the possible reasons for the observed

disagreements between the energy spectra in [6] and [11]
is considered in the framework of the SIBYLL [14] interac-
tion model.

The paper is organized as follows. In Section 2 the EAS
inverse approach and the definition of the problem of
uniqueness is described. It is shown, that the abundance
of primary nuclear species leads to pseudo solutions for
unfolded primary energy spectra. The existence and signif-
icance of the pseudo solutions are shown in Section 4. The
pseudo solutions for primary energy spectra were obtained
on the basis of simulation of KASCADE [6] shower spec-
tra. The EAS simulation model is presented in Section 3.
In Section 5 the peculiarities of the pseudo solutions are
discussed in comparison with the methodical errors of the
KASCADE data.

2. Problem of uniqueness

The EAS inverse problem is ill-posed by definition and
the unfolding of the corresponding integral equations does
not ensure the uniqueness of the solutions. The regularized
unfolding on the basis of a priori information on expected
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solutions (smoothness, monotony and non-negativity) in
some cases can redefine the inverse problem [15] and pro-
vide the appropriate solutions. However, the expected sin-
gularities (e.g., knees) in the primary energy spectra at
1015–1016 eV may erroneously be smoothed by regulariza-
tion algorithms and vice versa, be imitated by the unavoid-
able oscillations [15] of the solutions. Furthermore, the
EAS inverse problem implies evaluations of at least two
or more unknown primary energy spectra from the integral
equation set of Fredholm kind [6,11,12]. These peculiarities
have not been studied in detail and the problem of the
uniqueness of solutions can limit the number of evaluated
spectra.

Let fAðEÞ be the energy spectrum of a primary nucleus A
over the atmosphere, W AðxjEÞ be the probability density
function describing the transformation of A and E param-
eters of the primary nucleus to a measurable vector x. Then
the EAS inverse problem, i.e., the reconstruction of the
energy spectra of N A primary nuclei on the basis of the
detected spectra Y ðxÞ of EAS parameters, is defined by
the integral equation

Y ðxÞ ¼
XANA

A¼A1

Z
fAðEÞW AðxjEÞdE: ð1Þ

Evidently, if fA1;...ANA
ðEÞ are the solutions of Eq. (1), the

functions fAðEÞ þ gAðEÞ should also be the solutions of
(1), provided equation

X
A

Z
gAðEÞW AðxjEÞdE ¼ 0ð�DY Þ; ð2Þ

is satisfied for the given measurement errors DY ðxÞ and for
at least one of the combinations of the primary nuclei

nC ¼
XNA

j¼1

N A

j

� �
: ð3Þ

The number of combinations (3) stems from a possibility of
the existence of a set of functions gAðEÞ � g1;AðEÞ; . . . ;
gi;AðEÞ for each of the primary nuclei (A), which can inde-
pendently satisfy Eq. (2).

For example, suppose that NA ¼ 3. Let us denoteR
gi;Ak
ðEÞW Ak ðEÞdE by I i;Ak and, for simplicity, set the

right-hand side of Eq. (2) to 0. Then, following expression
(3), we find nC ¼ 7 independent combinations of Eq. (2):
I1;Ak ¼ 0 for k = 1, 2, and 3, I2;A1

þ I2;A2
¼ 0; I3;A1

þ
I2;A3
¼ 0; I3;A2

þ I3;A3
¼ 0 and I4;A1

þ I4;A2
þ I4;A3

¼ 0 with
different gi;Ak

ðEÞ functions. The measurement errors �DY
on the right-hand side of these equations can both increase
and decrease the domains of gi;Ak

ðEÞ functions.
One may call the set of functions gAðEÞ the pseudo func-

tions with the corresponding pseudo solutions (spectra)
fAðEÞ þ gAðEÞ. The oscillating gAðEÞ � g1;AðEÞ functions
at j = 1 are responsible for the first NA equationsR

g1;AðEÞW AðxjEÞdE ¼ 0ð�DY Þ; A � A1; . . . ANA , due to
the positive-definite probability density function W AðEÞ.

The pseudo solutions fAðEÞ þ g1;AðEÞ can be avoided by
using iterative unfolding algorithms [6,15].

Additional sources of the pseudo solutions originate
from the mutually compensative effects at j P 2:

�
X

k

Z
gAk
ðEÞW Ak ðxjEÞdE

’
X
m6¼k

Z
gAm
ðEÞW AmðxjEÞdE; ð4Þ

inherent to Eq. (2) for arbitrary groups of k and m 6¼ k pri-
mary nuclei. Since there are no limitations on the types of
the pseudo functions (except for fAðEÞ þ gAðEÞ > 0) that
would follow from expression (4), and the number of pos-
sible combinations (3) rapidly increases with the number of
evaluated primary spectra (NA), the problem of the unique-
ness of solutions may be insoluble for N A > 3. Moreover,
the pseudo functions have to restrict the efficiency of
unfolding energy spectra for NA ’ 2–3, because the unifi-
cation of Z ¼ 1; . . . ; 28 primary nuclei spectra into 2–3 nu-
clear species (e.g., light and heavy) inevitably increases the
uncertainties of the kernel functions W AðEÞ and thereby
also increases the domains of the pseudo functions.

Notice, that the pseudo solutions will always appear in
the iterative unfolding algorithms if the initial iterative val-
ues are varied within large intervals. At the same time, it is
practically impossible to derive the pseudo functions from
the unfolding of Eqs. (1) and (2) due to a strong ill-posed-
ness of the inverse problem. However, for a given set of the
measurement errors DY ðxÞ and the known kernel functions
W AðxjEÞ for A � A1; . . . ANA primary nuclei, Eq. (2) can be
regularized by parametrization of the pseudo functions
gAða; b; . . . jEÞ. The unknown parameters ða; b; . . .Þ can be
derived from a numerical solution of parametric Eq. (2),
and thereby one may also evaluate the parametrized
pseudo functions gAðEÞ.

Below (Section 3), an EAS simulation model for com-
puting the kernel function W AðEÞ and replicating the KAS-
CADE [6] EAS spectral errors DY ðxÞ is considered.

3. EAS simulation model

The primary energy spectra obtained in the KASCADE
experiment were derived on the basis of the detected
2-dimensional EAS size spectra Y ðxÞ � Y ðNe;N lÞ and an
iterative unfolding algorithm [15] for N A ¼ 5 primary
nuclei [6]. Evidently, whether these solutions are unique
or not depends on the significance of the arbitrary pseudo
functions jgAðEÞj from Eq. (2).

We suppose that the convolution of the shower spectra
W AðN e;NljEÞ at the observation level and corresponding
measurement errors rðN eÞ; rðN lÞ [1] are described by 2-
dimensional log-normal distributions with parameters
ne ¼ ln N eðA;EÞ; nl ¼ ln NlðA;EÞ; reðA;EÞ; rlðA;EÞ and
correlation coefficients qe;lðA;EÞ between the shower size
(ln N e) and the muon truncated size (ln Nl). We tested this
hypothesis by the v2 goodness-of-fit test using the CORS-
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IKA(NKG) EAS simulation code [13] for the SIBYLL2.1
[14] interaction model, 4 kinds of primary nuclei (A � p,
He, O, Fe), 5 energies (E � 1, 3.16, 10, 31.6, 100 PeV)
and simulation samples for each of E and A: 5000, 3000,
2000, 1500, 1000, respectively in 0–18� zenith angular inter-
val. The values of corresponding v2ðAi;EjÞ=nd:f :; ði ¼
1; . . . 4; j ¼ 1; . . . 5Þ were distributed randomly in the inter-
val 0.5–1.4 for the measurement ranges of the KASCADE
experiment (Ne;min ¼ 6:3� 104 and Nl;min ¼ 4� 103) and
the bin sizes D ln Ne;D ln N l ¼ 0:075.

Notice, that the combined 2-dimensional log-normal
distributions with parameters re;1ðA;EÞ at ln Ne < ne;
re;2ðA;EÞ at ln Ne > ne; rl;1ðA;EÞ at ln Nl < nl and
rl;2ðA;EÞ at ln Nl > nl, more precisely (v2=nd:f : 6 1:2)
describe the shower spectra W AðNe;N ljEÞ in the tail
regions.

We performed an additional test of the log-normal fit of
the WA spectra using multiple correlation analysis for the
shower parameters simulated by the log-normal
W AðNe;NljEÞ probability density functions and shower
parameters obtained from the CORSIKA EAS simulations
at power-law primary energy spectra (c = �1.5) and equiv-
alent abundances of primary nuclei. The corresponding
correlation coefficients were equal to qðln Ej ln N e;
ln N lÞ ¼ 0:97; qðln Aj ln N e; ln NlÞ ¼ 0:71; qðln A; ln NeÞ ¼
�0:14� 0:01; qðln A; ln NlÞ ¼ 0:18� 0:01, and were in
close agreement for both methods of Ne and Nl

generations.
We replicated the KASCADE 2-dimensional EAS size

spectrum Y ðNe;N lÞ (and corresponding DY) by picking
out Ne and Nl randomly from the 2-dimensional shower
spectra W AðNe;N ljEÞ after randomly picking A and E

parameters of a primary particle from the power-law
energy spectra

fAðEÞ / E�2:7 1þ E
Ek

� ��� ��0:5=�

; ð5Þ

with a rigidity-dependent knee Ek ¼ Z � 2000TV , the
sharpness parameter � = 3 and normalization of the all-
particle spectrum

R P
AfAðEÞdE ¼ 1. The relative abun-

dance of nuclei was arbitrarily chosen to be 0.3, 0.45,
0.15 and 0.1 for primary H, He, O and Fe nuclei respec-
tively, which approximately conforms with the expected
abundance from balloon and satellite data [16]. The medi-
ate values of the parameters of the probability density func-
tion W AðN e;NmjEÞ were estimated by the corresponding
log-parabolic splines.

The total number of simulated EAS events was set to
7� 105 in order to replicate the corresponding statistical
errors DY ðN e;NlÞ of the KASCADE data.

4. Pseudo solutions

On the basis of the obtained estimations of DY ðNe;NlÞ
(Section 3) for the KASCADE experiment, we examined
the uniqueness of unfolding (1) by v2-the minimization:

v2 ¼
XI

i¼1

XJ

j¼1

GðNe;i;N l;jÞ
DY ðNe;i;N l;jÞ

� �2

; ð6Þ

where GðNe;i;Nl;jÞ represents the left-hand side of Eq. (2)
for 2 kinds of the empirical pseudo functions:

gAðEÞ ¼ aA
E

Em

� ��cA

; ð7Þ

gAðEÞ ¼ aAððln E � bAÞ
3 þ gAÞ

E
Em

� ��3

; ð8Þ

while gAðEÞ þ fAðEÞ > 0, otherwise gAðEÞ ¼ �fAðEÞ. The
unknown aA; bA; cA and gA parameters in expressions (7)
and (8) were derived from v2 minimization (6). The num-
bers of bins were I = 60 and J = 45 with the bin size
D ln Ne; D ln N l ’ 0:1.

In fact, the minimization of v2 (6) for different represen-
tations (7) and (8) of the pseudo functions gAðEÞ provides a
solution of the corresponding parametric Eq. (2) with a
zero right-hand side. To avoid the trivial solutions
gAðEÞ � 0 and reveal the domains of the pseudo functions,
the values of some of the parameters were arbitrarily fixed
during the minimization of v2 (6). The magnitudes of the
fixed parameters were empirically determined via optimiza-
tion of conditions v2

min=nd:f : ’ 1 and jgAðEÞj � fAðEÞ for the
pseudo spectra with the fixed parameters.

The true primary energy spectra fAðEÞ for
A � H; He; O; Fe nuclei (5) and the all-particle energy
spectrum

P
fAðEÞ (lines) along with the corresponding

distorted (pseudo) spectra fAðEÞ þ gAðEÞ (symbols) are pre-
sented in Fig. 1 respectively. The parameters of the pseudo
functions (7) derived for v2

min=nd:f : ¼ 1:08ðnd:f: ¼ 717Þ are
presented in Table 1.

The effect of the pseudo functions (8) on the resulting
primary energy spectra is shown in Fig. 2. Evaluations of
the corresponding parameters are presented in Table 2
for v2

min=nd:f : ¼ 1:1. The variations of the cubic power
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Fig. 1. Primary energy spectra fAðEÞ and the all-particle spectrumP
fAðEÞ for A � H, He, O, Fe nuclei (lines) and the corresponding

pseudo solutions fAðEÞ þ gAðEÞ for the pseudo function (7) (symbols).
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indices in expression (8) in the range of 2 � 5 lead to differ-
ent types of pseudo solutions as well.

It is clear from Figs. 1 and 2, that the contribution of the
pseudo functions gAðEÞ can be comparable and even signif-
icantly larger than the values of the true spectra fAðEÞ.
Moreover, the pseudo solutions lose both the slopes and
the intensities of the spectra. At the same time, the all-
particle spectra slightly depend on the contribution of the
pseudo functions.

The same results (Tables 1 and 2) were obtained using
both the combined 2-dimensional log-normal representa-
tion of the shower spectra W AðN e;NljEÞ (Section 3) and
the 3-dimensional (ln E; ln Ne; ln N l) parabolic interpola-
tions of corresponding probability density functions
obtained by the CORSIKA code.

Evidently, the range of relatively large measurement
errors DY ðxÞ expands the domain of the pseudo functions.
Contributions of the mutually compensative effects (Eqs.
(2) and (4)) of the pseudo functions to the domain of the
pseudo solutions were tested using a 10 times larger EAS
simulation sample (n ¼ 7� 106) and the pseudo functions
with evident singularity:

gAðEÞ ¼ aAe
�1
A

E
eA

� �d

; ð9Þ

where d ¼ �1 at E 6 eA and d ¼ �7 at E > eA. The singu-
larity of the pseudo function (9) for A � H was fixed at
eH ¼ 3000 TeV and the scale factor aH ¼ �0:03. The
remaining parameters for primary nuclei A � He; O; Fe

were estimated by v2-minimization (6) and presented in
Table 3 for v2

min=nd:f : ¼ 2:01 and nd:f: ¼ 857. The accuracies
of integrations (2) were about 0.1%. The corresponding
pseudo solutions are shown in Fig. 3.

Since the measurement errors are negligibly small, the
significance of the mutually compensative effects is well
seen. The singularity of the proton spectrum was approx-
imately compensated by the He and O spectra. This is
due to both the large number (nC ¼ 15) of possible
mutually compensative combinations (3) and the pecu-
liarities of EAS development in the atmosphere (kernel
functions W AðEÞ, Section 3), which are expressed by
the approximately log–linear dependences of the statisti-
cal parameters hln Nei; hln N li; re and rl of shower spec-
tra W AðEÞ on energy (ln E) and nucleon number (ln A) of
primary nuclei [20,21]. The value of v2

min=nd:f: for a 10

times smaller EAS sample (n ¼ 7� 105) was equal to
0.25.
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Fig. 2. The same as Fig. 1 for the pseudo function (8).
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Fig. 3. The same as Fig. 1 for the pseudo function (9) and n ¼ 7� 106

simulated showers.

Table 1
Parameters aA (TeV�1) and cA of the pseudo function (7) for different
primary nuclei A and Em ¼ 1000 TeV

A aA � 104 cA

p 1:10� 0:06 2:71� 0:04
He �1:80 (fixed) 2.60 (fixed)
O 0:97� 0:05 2:65� 0:04
Fe �0:50 (fixed) 2.90 (fixed)

Table 2
Parameters aA (TeV�1), cA and g of the pseudo function (8) for different
primary nuclei A and Em ¼ 1000 TeV

A aA � 104 bA gA

p �9:00 (fixed) 7:76� 0:01 0 (fixed)
He 0:044� 0:02 13:2� 1:08 169� 98
O �0:80 (fixed) 8:47� 0:05 0:94� 0:16
Fe 0:010� 0:002 11:4� 0:14 50 (fixed)

Table 3
Parameters aA (TeV�1) and eA (TeV) of the pseudo function (9) for
different primary nuclei A and eH ¼ 3000 TeV

A aA � 100 eA=eH

p �3:0 (fixed) 1 (fixed)
He 3:05� 0:07 1:03� 0:01
O �0:84� 0:06 1:08� 0:03
Fe 0:15� 0:02 1:29� 0:10
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5. Discussion

The results from Figs. 1–3 show that the pseudo func-
tions with mutually compensative effects exist and belong
practically to all families – linear (7), non-liner (8) and even
singular (9) in a logarithmic scale.

The all-particle energy spectra in Figs. 1–3 are practi-
cally indifferent to the pseudo solutions of elemental spec-
tra. This fact directly follows from Eq. (2) for pseudo
solutions and is well confirmed by the identity of the
GAMMA [11,12] and KASCADE [6] all-particle energy
spectra in spite of disagreements of the elemental (p, He,
Fe) primary energy spectra (see [11,12]).

The v2 minimization (6) uses mainly the nearest pseudo
energy spectra with free parameters for compensation of
the pseudo spectra with fixed parameters. The significance
of the pseudo functions jgAðEÞj in most cases exceeds the
significance of the evaluated primary energy spectra fAðEÞ
and unfolding of (1) can not be effective for N A ¼ 4.

The unfolding of the primary energy spectra for NA ¼ 5
will increase the number of possible combinations (3) of the
pseudo solutions and the corresponding pseudo functions
by a factor of two. Taking into account the large values
of applied v2

min=nd:f : ’ 2–3 [6] one may conclude that the
contributions of the pseudo functions in the unfolded
energy spectra of [6] have to be dominant.

The ‘‘methodical errors’’ obtained in [6] for N A ¼ 5
define the uncertainties of the solutions intrinsic only to
the given unfolding algorithms. The existence and signifi-
cance of the mutually compensative pseudo solutions fol-
low from Eqs. (1) and (2) and from the peculiarities of
the shower spectra W AðxjEÞ regardless of the unfolding
algorithms.

Comparison of the methodical errors ðfAðEÞþ
DfAðEÞÞ=fAðEÞ for A � He and A � Fe from [6] with corre-

sponding errors ðfAðEÞ þ gAðEÞÞ=fAðEÞ due to the pseudo
solutions from expressions (7) and (8) are shown in
Fig. 4. The magnitudes of the fixed parameters were empir-
ically determined by maximizing jgHeðEÞj (left panel) and
jgFeðEÞj (right panel) for a given goodness-of-fit test
v2

min=nd:f : ’ 2:5 from [6].
It is seen that the methodical errors (dark shaded areas)

from [6] significantly underestimate the contribution of the
pseudo solutions (light shaded areas) from expressions (7)
and (8). Moreover, the methodical errors from [6] slightly
depend on the primary energy (or statistical errors),
whereas the domains of the pseudo solutions strongly cor-
relate with the statistical errors according to definition (2).

6. Conclusion

The results show that the reconstruction of primary
energy spectra using unfolding algorithms [6,15] can not
be effective and the disagreement between the KASCADE
[6] and GAMMA [11,12] data is insignificant in compari-
son with the large domains of the mutually compensative
pseudo solutions (Fig. 4) of the unfolded spectra [6].

Even though the oscillating pseudo solutions g1;AðEÞ
(Section 2) are possible to avoid using regularization algo-
rithms [15], the mutually compensative effect (4) of the
arbitrary pseudo functions gAðEÞ intrinsic to the expression
(2) is practically impossible to avoid at NA > 1.

The uncertainties of solutions due to the mutually com-
pensative pseudo functions can be obtained by varying the
initial values of iterations within a wide range in the frame-
works of a given unfolding algorithm.

To decrease the contributions of the mutually compen-
sative pseudo solutions one may apply a parameterization
of the integral Eq. (1) [1,2,4,11,12] using a priori (expected
from theories [17–19]) known primary energy spectra with
a set of free spectral parameters. This transforms the EAS
inverse problem into a set of equations with unknown spec-
tral parameters, and thereby the EAS inverse problem is
transmuted into a test of the given primary energy spectra
using detected EAS data [4]. The reliability of the solutions
can be determined by their stability depending on the num-
ber of spectral parameters, the agreement between the
expected and detected EAS data sets, and the conformity
of the spectral parameters with theoretic predictions.

The all-particle energy spectra (Figs. 1–3) are practically
indifferent toward the pseudo solutions for elemental
spectra.

The obtained results depend slightly on the spectral rep-
resentations of the shower spectra W AðEÞ and the primary
energy spectra fAðEÞ.
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